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Abstract - Modern complex system design demands 
modeling on a high level of abstraction together with the system 
environment components. Such model enables mission level 
system simulation in the context of its operational conditions. A 
mission level design language providing mission and system level 
verification is presented in this paper. Also, this language enables 
designers to describe some of the components at implementation 
level to test and validate the system implementation at mission 
level. In this way a uniform design framework is achieved from 
mission/system down to implementation level. 

I. INTRODUCTION

Modern System-on-Chip (SoC) designs grow in 
complexity and combine analog, digital and mixed-signal 
hardware components, as well as embedded software and 
non-electrical elements on one chip. Therefore, such 
designs require powerful modeling languages covering 
system architecture, mission/operational environment 
modeling, embedded software, register-transfer-level, 
analog and mixed-signal modeling and verification at 
different abstraction levels. Since system architects need to 
come to a proof of the system concept very early in the 
design flow, mission/operational and system level 
modeling and simulation are becoming very important step 
during the design process. At the same time, hardware 
designers need a design language capable to describe 
various analog, digital and non-electronic components. It is 
also necessary to enable proper design verification at 
system and implementation levels. 

Mainstream hardware description and verification 
languages such as VHDL-AMS, SystemC, OpenVera, PSL, 
SystemVerilog do not meet all of the requirements in 
modern mixed-signal SoC design [1]. VHDL-AMS is not 
appropriate for specifying software and system level 
behavior. SystemC can be used for architectural tradeoffs 
and early application software verification, but it does not 
support modeling of analog and mixed-signal systems. 
SystemVerilog enables creation of efficient testbenches and 
assertions for simulation-based and formal property 
verification of digital systems. However, it does not 
provide analog and mixed-signal modeling and verification 
constructs. 

This paper presents the idea of developing a uniform 
design language covering different levels of abstraction in 
modeling and simulation of mixed-signal SoC. This 
Mission Level Design Language is based on AleC++ [2]. 
In this way designers can describe mission and system 
level modules and, after system validation at this level, 
replace some of the components with implementation level, 
more detailed models (digital circuits, transistor level 
models etc.) to verify the complete system implementation 
in its working environment. Such design language provides 
a uniform design framework from mission/operational level 
down to implementation. 

II. MISSION LEVEL DESIGN

Typical design flow of modern mixed-signal SoC is 
shown in Fig. 1. It starts with modeling of architecture at 
high-level of abstraction to decrease simulation time and to 
get an early feedback of the complete system behavior. The 
system architecture should be refined and tested for 
functional correctness at mission/operational level to 
validate the complete system in the context of its 
operational conditions. Mission level design and simulation 
integrate architectures, functions, system environments and 
missions into a single framework. In this approach a virtual 
prototype of the entire heterogeneous system including 
typical operational conditions is developed. In that way it is 
possible to verify the impact of design changes and 
implementation decisions on overall system performance, 
improving chances of first-pass system success. After 
validation at mission and architectural levels, 
hardware/software partitioning is performed and functional 
models of the system components are developed. At the 
end system modules and the complete system should be 
modeled and validated at implementation level. 

Fig. 1. Levels of the design flow for complex mixed-signal SoC. 

Mission level design concept will be illustrated by an 
example of a navigation system. The system mission is to 
help in orientation on the way from point A back to A via 
B and C, as shown in Fig. 2. 
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Fig. 2. Navigation system mission.

It consists of various components such as electronic 
compass, GPS module, gyros etc. During mission level 
design process it is necessary to model the whole system 
and validate its functionality on the desired path. Therefore, 
together with the system model, appropriate model of the 
system environment should be built. 

A. Mission Level Modeling and Simulation 

The tool MLDesigner is used to develop and simulate 
models at mission level [3]. Modeling is based on creating 
block diagrams using predefined primitive modules 
(primitives) from libraries.  It is also possible to develop 
own primitives in a C++ like language. Multi-domain 
modules can be combined and simulated together. 
Supported domains are continuous time, discrete event, 
dynamic data flow, synchronous data flow, finite state 
machines and higher order functions. MLDesigner provides 
mission/operational level design tradeoff that includes 
modeling and simulation of dynamic Use Cases, mission 
environment (e.g., terrain, channel models) and operational 
modeling (e.g., human input devices, human output 
devices). It also enables system level design tradeoff 
(communication network design, embedded systems 
design) and functional level design tradeoff (algorithm 
design, hardware/software partitioning). 

Fig. 3 shows system level model of the electronic 
compass [4] that is a part of the navigation system. 

Fig. 3. Electronic compass mission level model. 

The model is developed in MLDesigner together with 
some modules necessary to verify the compass 
functionality. The compass generates at the output the 
value of azimuth . It is the angle between magnetic north 
and the heading direction. Magnetic north is the direction 
of “horizontal” component of the earth’s magnetic field, 
the earth’s field component perpendicular to gravity. The 
compass consists of the following building blocks: 
magnetic field sensors, amplifiers, A/D converters and 
microcontroller. Blocks “Hx File Data” and “Hy File Data” 
enable reading of input magnetic field strengths from files. 
The microcontroller executes software module that 

calculates the desired azimuth value from the signals 
proportional to the magnetic field strengths. This can be 
done by evaluating the arctan function using CORDIC 
(COordinate Rotating DIgital Computing) algorithm [5]. 

Fig. 4 shows mission level simulation results of the 
compass for the path given in Fig. 2. 

Fig. 4. Compass mission level simulation results. 

III. MISSION LEVEL DESIGN BASED ON ALEC++

A. The AleC++ Language Features 

AleC++ (Analog and Logic Electronic C++) is a 
proprietary object-oriented Hardware Description 
Language (HDL) developed for use in the simulator 
Alecsis [2]. It can be used for modeling of 
hardware/software systems from various domains at 
different levels of abstraction. Being a superset of C++ it 
can be used to describe analog, digital and mixed-signal 
hardware components,  software modules, as well as non-
electrical elements. AleC++ also provides some additional 
useful modeling features both for modeling of hardware 
components and system-level descriptions not found in 
other HDLs [2]. 

The basic element of hierarchical system description 
in AleC++ is module. The module behavior can be 
described using C++ like statements. AleC++ enables 
structural and behavioral modeling styles as well as the 
combination of the two. The module can also contain 
various parameters. 

B. Mission Level Modeling in AleC++ 

Having in mind that MLDesigner models are 
hierarchical and based on primitives it can be concluded 
that these models can be described in AleC++. In order to 
accomplish that task, it is necessary to translate mission 
level design elements into the AleC++ language by 
developing appropriate translator [6]. In this way it is 
possible to use a vast library of predefined MLDesigner 
primitives in simulations in the Alecsis simulator. 
Organization of the simulator Alecsis extended by 
translator of MLDesigner primitives into equivalent 
AleC++ modules is shown in Fig. 5. 

Functionality of MLDesigner primitives is defined 
using the Ptolemy language [3]. It is a preprocessor 



language that allows the designer to use C++ code. The 
external interface of a primitive contains input/output port 
definitions and parameter definitions. For each port 
definition, MLDesigner generates an entry in the primitive 
source code. For parameters it is possible to specify name, 
type and default value. The Ptolemy language provides 
appropriate constructs for the definition of methods that 
describe the functionality of the primitive. These methods 
are executed at different stages in simulation of primitive 
instances such as instance creation and deletion, simulation 
start-up time and during simulation. The functionality of 
these methods is defined using C++ code and the Ptolemy 
language only defines the method structure. 

Since AleC++ is a superset of C++, mapping of 
mission level primitives into AleC++ can be easily 
implemented. The correspondence between MLDesigner 
elements and appropriate AleC++ constructs is shown in 
Table I. 

TABLE I 
CORRESPONDENCE E BETWEEN MLDESIGNER AND ALEC++

ELEMENTS

MLDesigner AleC++ 
Primitive, Module Module 

System Root module 

Parameters Module 
parameters 

Ports Ports 

Functionality in 
C++

C++ code, 
process 

statements, 
equation 

statements 

Primitives and modules in MLDesigner correspond to 
AleC++ modules. A complete system model that can be 
executed/simulated is equivalent to root module in 
AleC++. Primitive parameters can be mapped into 
parameters of the equivalent AleC++ module. Since 
methods defined in the Ptolemy language can be executed 
at different stages during the simulation process, they can 
be mapped to different processes in AleC++ (initial, per 
moment, per iteration etc.). C++ code for methods can be 
easily included in AleC++ modules and statements for 
specifying equations. 

To make things clearer, the process of AleC++ code 
generation from MLDesigner primitives will be illustrated 
on an example of amplifier module that is a part of the 
electronic compass system. In MLDesigner, amplifier 
module has an input and an output port, as well as, 
parameter gain specifying amplification value. The 
AleC++ module name is the same as MLDesigner module 
name. After AleC++ module declaration, declarations for 
all ports are written. All float type ports in MLDesigner 
modules correspond to ports of type node in AleC++. 
Statements in the Ptolemy language description relating to 
writing values to output ports are translated into equivalent 
AleC++ statements for defining equations. All other C/C++ 

code is mapped to AleC++  without change. Amplifier 
primitive in MLDesigner, its description in the Ptolemy 
language and the complete equivalent AleC++ module that 
translator generates for that model are given in Fig. 5. 

  input
  {
    name {input }
    type {float }
  }
  output
  {
    name {output }
    type {float }
  }
  defparameter
  {
    name       {gain }
    type       {float }
    default    {"1.0" }
    desc       {"Gain of the star." }
  }
  go
  {
    output%0 << double(gain) * double(input%0);
  }

MLDesigner Model

AleC++ Model
module current SDFGain(node input;node output) {
 action(double gain) {
    process initial {

    /* GO Method from MLDesigner model */
    eqn SDFGain, {output}.v = gain * {input}.v;

 }//end Process block
}//end Action block
}//end Module

Fig. 5. MLDesigner primitive module, Ptolemy language 
description and equivalent AleC++ model for amplifier 

When the translator generates equivalent AleC++ 
code for digital modules, declarations of integer ports in 
MLDesigner module map to ports of type signal in AleC++ 
together with appropriate port direction. The process 
created for digital modules has sensitivity list containing all 
input ports of type signal. Statements in the MLDesigner 
module description relating to writing values to output 
ports are converted into equivalent AleC++ signal 
assignment statements. 

C. Implementation Level Modeling in AleC++ 

As described, after validation at mission and 
architectural levels, mission level models can be translated 
into equivalent AleC++ descriptions. Then, implementation 
level models described in the AleC++ language can replace 
some of the compass mission level modules. It enables to 
test various implementations at mission level in the context 
of system’s working environment using the Alecsis 
simulator. 

To illustrate implementation level modeling in 
AleC++, implementation of the amplifier module is 



considered. The mission level module for the amplifier is 
replaced by the implementation consisting of two cascaded 
common-source MOSFET amplifiers and non-inverting 
amplifier with operational amplifier (Fig. 6). The 
operational amplifier is described at behavioral level while 
the complete non-inverting amplifier circuit is described at 
structural level. The MOSFET amplifier circuit is described 
at transistor level in AleC++ using SPICE model card for 
MOSFET. Some parts of AleC++ description for the 
amplifier are shown in Fig. 7. The amplifier is designed to 
have almost the same gain as in the mission level module. 
The designer should take care that in this case analog input 
signals should stimulate the compass system because 
transistor level models are used. Generated simulation 
results for sinusoidal input signals are given in Fig. 8. 
Because input signals are in phase the compass generates 
just two values for azimuth, for positive and negative 
values, respectively. 
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Fig. 6. Amplifier module implemented as two cascaded MOSFET 
amplifiers and non-inverting amplifier with opamp 

module simpleMOS (node input,output) { 
  vgen Vdd; 
  resistor Rd, R1, R2, Rg, Rp, Rs; 
  capacitor Cc, C1, Cs; 
  mosfet m1; 

  Vdd(vdd, 0) 12V; 
  Rg (input1, input) 1k; 
  Cc(g, input) 6n; 
…
  //MOSFET transistor 
  m1(d, g, s, 0) {model=my_nmos;l=2u;w=6u;}; 
}
module opamp (node minus; node plus; node 
output) { 
   vcvs vout; //voltage controlled source 
   vout (output,0,plus,minus) gain=1e5; 
   action () { 
      process per_iteration { 
         vout->gain=1e5; 
      } 
   } 
}

Fig. 7. Parts of theAleC++ description for the amplifier. 

Fig. 8. Alecsis simulation results of the compass with the 
amplifier module shown in Fig. 6 

IV. CONCLUSION

A mission level design language based on hardware 
description language AleC++ is presented in this paper.  It 
extends powerful modeling capabilities of AleC++ with 
possibility to use mission level modules. Such design 
language covers the complete design flow of complex 
system from mission/operational down to implementation 
level. Comparing to other design languages, it enables the 
description of mixed-mode and mixed-signal systems 
containing various analog, digital and non-electronic 
components as well as embedded software modules. The 
language provides the complete system verification and 
gives the designer an opportunity to combine different 
levels of abstraction for various system modules and test 
different implementation solutions at mission level.  
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