
1-4244-0117-8/06/$20.00 © 2006 IEEE

PROC. 25th INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2006), BELGRADE, SERBIA AND MONTENEGRO, 14-17 MAY, 2006

A Mission Level Design Language Based on AleC++
Bojan An elkovi , Van o Litovski, Volker Zerbe

Abstract - Modern complex system design demands
modeling on a high level of abstraction together with the system
environment components. Such model enables mission level
system simulation in the context of its operational conditions. A
mission level design language providing mission and system level
verification is presented in this paper. Also, this language enables
designers to describe some of the components at implementation
level to test and validate the system implementation at mission
level. In this way a uniform design framework is achieved from
mission/system down to implementation level.

I. INTRODUCTION

Modern System-on-Chip (SoC) designs grow in
complexity and combine analog, digital and mixed-signal
hardware components, as well as embedded software and
non-electrical elements on one chip. Therefore, such
designs require powerful modeling languages covering
system architecture, mission/operational environment
modeling, embedded software, register-transfer-level,
analog and mixed-signal modeling and verification at
different abstraction levels. Since system architects need to
come to a proof of the system concept very early in the
design flow, mission/operational and system level
modeling and simulation are becoming very important step
during the design process. At the same time, hardware
designers need a design language capable to describe
various analog, digital and non-electronic components. It is
also necessary to enable proper design verification at
system and implementation levels.

Mainstream hardware description and verification
languages such as VHDL-AMS, SystemC, OpenVera, PSL,
SystemVerilog do not meet all of the requirements in
modern mixed-signal SoC design [1]. VHDL-AMS is not
appropriate for specifying software and system level
behavior. SystemC can be used for architectural tradeoffs
and early application software verification, but it does not
support modeling of analog and mixed-signal systems.
SystemVerilog enables creation of efficient testbenches and
assertions for simulation-based and formal property
verification of digital systems. However, it does not
provide analog and mixed-signal modeling and verification
constructs.

This paper presents the idea of developing a uniform
design language covering different levels of abstraction in
modeling and simulation of mixed-signal SoC. This
Mission Level Design Language is based on AleC++ [2].
In this way designers can describe mission and system
level modules and, after system validation at this level,
replace some of the components with implementation level,
more detailed models (digital circuits, transistor level
models etc.) to verify the complete system implementation
in its working environment. Such design language provides
a uniform design framework from mission/operational level
down to implementation.

II. MISSION LEVEL DESIGN

Typical design flow of modern mixed-signal SoC is
shown in Fig. 1. It starts with modeling of architecture at
high-level of abstraction to decrease simulation time and to
get an early feedback of the complete system behavior. The
system architecture should be refined and tested for
functional correctness at mission/operational level to
validate the complete system in the context of its
operational conditions. Mission level design and simulation
integrate architectures, functions, system environments and
missions into a single framework. In this approach a virtual
prototype of the entire heterogeneous system including
typical operational conditions is developed. In that way it is
possible to verify the impact of design changes and
implementation decisions on overall system performance,
improving chances of first-pass system success. After
validation at mission and architectural levels,
hardware/software partitioning is performed and functional
models of the system components are developed. At the
end system modules and the complete system should be
modeled and validated at implementation level.

Fig. 1. Levels of the design flow for complex mixed-signal SoC.

Mission level design concept will be illustrated by an
example of a navigation system. The system mission is to
help in orientation on the way from point A back to A via
B and C, as shown in Fig. 2.

B. An elkovi , and V. Litovski are with the Department of
Electronics, Faculty of Electronic Engineering, University of Niš,
Aleksandra Medvedeva 14, 18000 Niš, Serbia & Montenegro, E-
mail: (abojan,vanco)@elfak.ni.ac.yu

V. Zerbe is with Computer Science and Automation Faculty,
Technical University of Ilmenau, Germany, E-mail:
volker.zerbe@tu-ilmenau.de

Fig. 2. Navigation system mission.

It consists of various components such as electronic
compass, GPS module, gyros etc. During mission level
design process it is necessary to model the whole system
and validate its functionality on the desired path. Therefore,
together with the system model, appropriate model of the
system environment should be built.

A. Mission Level Modeling and Simulation

The tool MLDesigner is used to develop and simulate
models at mission level [3]. Modeling is based on creating
block diagrams using predefined primitive modules
(primitives) from libraries. It is also possible to develop
own primitives in a C++ like language. Multi-domain
modules can be combined and simulated together.
Supported domains are continuous time, discrete event,
dynamic data flow, synchronous data flow, finite state
machines and higher order functions. MLDesigner provides
mission/operational level design tradeoff that includes
modeling and simulation of dynamic Use Cases, mission
environment (e.g., terrain, channel models) and operational
modeling (e.g., human input devices, human output
devices). It also enables system level design tradeoff
(communication network design, embedded systems
design) and functional level design tradeoff (algorithm
design, hardware/software partitioning).

Fig. 3 shows system level model of the electronic
compass [4] that is a part of the navigation system.

Fig. 3. Electronic compass mission level model.

The model is developed in MLDesigner together with
some modules necessary to verify the compass
functionality. The compass generates at the output the
value of azimuth . It is the angle between magnetic north
and the heading direction. Magnetic north is the direction
of “horizontal” component of the earth’s magnetic field,
the earth’s field component perpendicular to gravity. The
compass consists of the following building blocks:
magnetic field sensors, amplifiers, A/D converters and
microcontroller. Blocks “Hx File Data” and “Hy File Data”
enable reading of input magnetic field strengths from files.
The microcontroller executes software module that

calculates the desired azimuth value from the signals
proportional to the magnetic field strengths. This can be
done by evaluating the arctan function using CORDIC
(COordinate Rotating DIgital Computing) algorithm [5].

Fig. 4 shows mission level simulation results of the
compass for the path given in Fig. 2.

Fig. 4. Compass mission level simulation results.

III. MISSION LEVEL DESIGN BASED ON ALEC++

A. The AleC++ Language Features

AleC++ (Analog and Logic Electronic C++) is a
proprietary object-oriented Hardware Description
Language (HDL) developed for use in the simulator
Alecsis [2]. It can be used for modeling of
hardware/software systems from various domains at
different levels of abstraction. Being a superset of C++ it
can be used to describe analog, digital and mixed-signal
hardware components, software modules, as well as non-
electrical elements. AleC++ also provides some additional
useful modeling features both for modeling of hardware
components and system-level descriptions not found in
other HDLs [2].

The basic element of hierarchical system description
in AleC++ is module. The module behavior can be
described using C++ like statements. AleC++ enables
structural and behavioral modeling styles as well as the
combination of the two. The module can also contain
various parameters.

B. Mission Level Modeling in AleC++

Having in mind that MLDesigner models are
hierarchical and based on primitives it can be concluded
that these models can be described in AleC++. In order to
accomplish that task, it is necessary to translate mission
level design elements into the AleC++ language by
developing appropriate translator [6]. In this way it is
possible to use a vast library of predefined MLDesigner
primitives in simulations in the Alecsis simulator.
Organization of the simulator Alecsis extended by
translator of MLDesigner primitives into equivalent
AleC++ modules is shown in Fig. 5.

Functionality of MLDesigner primitives is defined
using the Ptolemy language [3]. It is a preprocessor

language that allows the designer to use C++ code. The
external interface of a primitive contains input/output port
definitions and parameter definitions. For each port
definition, MLDesigner generates an entry in the primitive
source code. For parameters it is possible to specify name,
type and default value. The Ptolemy language provides
appropriate constructs for the definition of methods that
describe the functionality of the primitive. These methods
are executed at different stages in simulation of primitive
instances such as instance creation and deletion, simulation
start-up time and during simulation. The functionality of
these methods is defined using C++ code and the Ptolemy
language only defines the method structure.

Since AleC++ is a superset of C++, mapping of
mission level primitives into AleC++ can be easily
implemented. The correspondence between MLDesigner
elements and appropriate AleC++ constructs is shown in
Table I.

TABLE I
CORRESPONDENCE E BETWEEN MLDESIGNER AND ALEC++

ELEMENTS

MLDesigner AleC++
Primitive, Module Module

System Root module

Parameters Module
parameters

Ports Ports

Functionality in
C++

C++ code,
process

statements,
equation

statements

Primitives and modules in MLDesigner correspond to
AleC++ modules. A complete system model that can be
executed/simulated is equivalent to root module in
AleC++. Primitive parameters can be mapped into
parameters of the equivalent AleC++ module. Since
methods defined in the Ptolemy language can be executed
at different stages during the simulation process, they can
be mapped to different processes in AleC++ (initial, per
moment, per iteration etc.). C++ code for methods can be
easily included in AleC++ modules and statements for
specifying equations.

To make things clearer, the process of AleC++ code
generation from MLDesigner primitives will be illustrated
on an example of amplifier module that is a part of the
electronic compass system. In MLDesigner, amplifier
module has an input and an output port, as well as,
parameter gain specifying amplification value. The
AleC++ module name is the same as MLDesigner module
name. After AleC++ module declaration, declarations for
all ports are written. All float type ports in MLDesigner
modules correspond to ports of type node in AleC++.
Statements in the Ptolemy language description relating to
writing values to output ports are translated into equivalent
AleC++ statements for defining equations. All other C/C++

code is mapped to AleC++ without change. Amplifier
primitive in MLDesigner, its description in the Ptolemy
language and the complete equivalent AleC++ module that
translator generates for that model are given in Fig. 5.

 input
 {
 name {input }
 type {float }
 }
 output
 {
 name {output }
 type {float }
 }
 defparameter
 {
 name {gain }
 type {float }
 default {"1.0" }
 desc {"Gain of the star." }
 }
 go
 {
 output%0 << double(gain) * double(input%0);
 }

MLDesigner Model

AleC++ Model
module current SDFGain(node input;node output) {
 action(double gain) {
 process initial {

 /* GO Method from MLDesigner model */
 eqn SDFGain, {output}.v = gain * {input}.v;

 }//end Process block
}//end Action block
}//end Module

Fig. 5. MLDesigner primitive module, Ptolemy language
description and equivalent AleC++ model for amplifier

When the translator generates equivalent AleC++
code for digital modules, declarations of integer ports in
MLDesigner module map to ports of type signal in AleC++
together with appropriate port direction. The process
created for digital modules has sensitivity list containing all
input ports of type signal. Statements in the MLDesigner
module description relating to writing values to output
ports are converted into equivalent AleC++ signal
assignment statements.

C. Implementation Level Modeling in AleC++

As described, after validation at mission and
architectural levels, mission level models can be translated
into equivalent AleC++ descriptions. Then, implementation
level models described in the AleC++ language can replace
some of the compass mission level modules. It enables to
test various implementations at mission level in the context
of system’s working environment using the Alecsis
simulator.

To illustrate implementation level modeling in
AleC++, implementation of the amplifier module is

considered. The mission level module for the amplifier is
replaced by the implementation consisting of two cascaded
common-source MOSFET amplifiers and non-inverting
amplifier with operational amplifier (Fig. 6). The
operational amplifier is described at behavioral level while
the complete non-inverting amplifier circuit is described at
structural level. The MOSFET amplifier circuit is described
at transistor level in AleC++ using SPICE model card for
MOSFET. Some parts of AleC++ description for the
amplifier are shown in Fig. 7. The amplifier is designed to
have almost the same gain as in the mission level module.
The designer should take care that in this case analog input
signals should stimulate the compass system because
transistor level models are used. Generated simulation
results for sinusoidal input signals are given in Fig. 8.
Because input signals are in phase the compass generates
just two values for azimuth, for positive and negative
values, respectively.

uout

uout

uin

R2

R1

Non-inverting amplifier

uinuout

uout

MOSFET amplifier

R1

uin

uin

RD

RP

C1RS

CC

CS

R2

VDD

output
Amplifier

input MOSFET
Amplifier

MOSFET
Amplifier

Non-inverting
Amplifier

Fig. 6. Amplifier module implemented as two cascaded MOSFET
amplifiers and non-inverting amplifier with opamp

module simpleMOS (node input,output) {
 vgen Vdd;
 resistor Rd, R1, R2, Rg, Rp, Rs;
 capacitor Cc, C1, Cs;
 mosfet m1;

 Vdd(vdd, 0) 12V;
 Rg (input1, input) 1k;
 Cc(g, input) 6n;
…
 //MOSFET transistor
 m1(d, g, s, 0) {model=my_nmos;l=2u;w=6u;};
}
module opamp (node minus; node plus; node
output) {
 vcvs vout; //voltage controlled source
 vout (output,0,plus,minus) gain=1e5;
 action () {
 process per_iteration {
 vout->gain=1e5;
 }
 }
}

Fig. 7. Parts of theAleC++ description for the amplifier.

Fig. 8. Alecsis simulation results of the compass with the
amplifier module shown in Fig. 6

IV. CONCLUSION

A mission level design language based on hardware
description language AleC++ is presented in this paper. It
extends powerful modeling capabilities of AleC++ with
possibility to use mission level modules. Such design
language covers the complete design flow of complex
system from mission/operational down to implementation
level. Comparing to other design languages, it enables the
description of mixed-mode and mixed-signal systems
containing various analog, digital and non-electronic
components as well as embedded software modules. The
language provides the complete system verification and
gives the designer an opportunity to combine different
levels of abstraction for various system modules and test
different implementation solutions at mission level.

REFERENCES

[1] B. An elkovi , V. Litovski, V. Zerbe, “New Aspects in
HDL’s Performance Evaluation”, in Proc. of IEEE Region 8
EUROCON 2005 Conference, Belgrade, 2005, pp. 499-502

[2] V. Litovski, D. Maksimovi , and Ž. Mr arica, “Mixed-Signal
Modeling with AleC++: Specific Features of the HDL”,
Simulation Practice and Theory 8, 2001, pp. 433-449

[3] MLDesigner Documentation, Version 2.4, MLDesign
Technologies, Inc., 2003.

[4] T. Stork, Application Note – Electronic Compass Design using
KMZ51 and KMZ52, Philips Semiconductors, Systems
Laboratory Hamburg, Germany, 2000.
www.web-ee.com/primers/files/AN00022_COMPASS.pdf

[5] Angular Position Development Kit for the 2SA-10, Operation
Manual, GMW, 2005.,
www.gmw.com/magnetic_measurements/
Sentron/sensors/documents/AN_125KIT_manual.pdf

[6] V. Zerbe, and B. An elkovi , “Design Flow for Automated
Programming of FPGA”, in Proc. of IEEE 24th International
Conference on Microelectronics (MIEL 2004), Vol. 2, Niš,
Serbia and Montenegro, 2004, pp. 715-718

